Erythema reference action spectrum and standard erythema dose

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standard ISO 17166 was prepared as Standard CIE S 007/E by the International Commission on Illumination, which has been recognized by the ISO Council as an international standardizing body. It was adopted by ISO under a special procedure which requires approval by at least 75 % of the member bodies casting a vote, and is published as a joint ISO/CIE edition.

The International Commission on Illumination (abbreviated as CIE from its French title) is an organization devoted to international cooperation and exchange of information among its member countries on all matters relating to the science and art of lighting.

Annex A of this International Standard is for information only.

Foreword

Standards produced by the Commission Internationale de l'Éclairage (CIE) are a concise documentation of data defining aspects of light and lighting, for which international harmony requires such unique definition. CIE Standards are therefore a primary source of internationally accepted and agreed data, which can be taken, essentially unaltered, into universal standard systems.

The CIE undertook a major review of its official recommendations on photobiological effects, their dose relationships and measurement. Based on these investigations the present standard describes present day knowledge of the subject.

This Standard has been approved by the National Committees of the CIE and supersedes the recommendations made in Publication CIE 106/4 — 1993 (reprint from CIE-Journal 6/1 17-22 1987) A reference action spectrum for ultraviolet induced erythema in human skin.
This CIE Standard reflects present day knowledge of UV radiation effect on humans, specially erythema, but does not absolve those carrying out experiments with humans from their responsibility for the safety and well being of the subjects involved.

1 Introduction

The problem of dosimetry in skin photobiology lies in the fact that the ability of ultraviolet (UV) radiation to elicit erythema in human skin depends strongly on wavelength, encompassing a range of four orders of magnitude between 250 nm and 400 nm. Thus a statement that a subject received an exposure dose of 1 J·cm$^{-2}$ (10^4 J·m$^{-2}$) of UV radiation conveys nothing about the consequences of that exposure in terms of erythema. If the radiation source was a UVA fluorescent lamp, no erythemal response would be seen apart from in people exhibiting severe, abnormal pathological photosensitivity. The same dose delivered from an unfiltered mercury arc lamp or fluorescent sun-lamp would result in marked violaceous erythema in most white skinned individuals. Consequently, photobiologists have long recognised the need to express the exposure as an erythemally-weighted quantity.\(^1\)

Recently the term minimal erythema dose (MED) has been used widely as a 'measure' of erythemal radiation. This is unreasonable because the MED is not a standard measure of anything but, on the contrary, encompasses the variable nature of individual sensitivity to ultraviolet radiation. Variables which affect the MED include optical and radiometric characteristics of the source; determinants of the exposure such as dose increment and field size; nature of the skin such as pigmentation, previous light exposure, and anatomical site; and observational factors such as definition of the end point, time of reading after exposure, and ambient illumination.

To avoid further confusing misuse of the term MED, we propose that this term be reserved solely for observational studies in humans and other animals, and that a new term, the standard erythema dose (SED) be used as a standardized measure of erythemogenic UV radiation.

2 Scope

This Standard specifies the erythema reference action spectrum ($s_E(\lambda)$), and the Standard Erythema Dose (SED).

3 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to
agreements based on this Standard are encouraged to investigate the possibility of applying most recent editions of the standards indicated below. Members of CIE, the International Electrotechnical Commission (IEC) and the International Organization for Standardization (ISO) maintain registers of currently valid international standards.

CIE 17.4-1987: International Lighting Vocabulary — equivalent to IEC 50(845)

CIE 90-1991: Sunscreen testing (UVB).

CIE 103/3-1993: Reference action spectra for ultraviolet induced erythema and pigmentation of different human skin (CIE Collection in Photobiology and Photochemistry).

CIE 125-1997: Standard Erythema Dose, a Review.

4 Definitions

_erythema action spectrum (s_e(\lambda))_

Spectral dependence of the ability of UV radiation to produce erythema in human skin.

Note 1 to entry: It is usual to tabulate and plot the \(s_e(\lambda) \) normalized to its maximum.

erythemal effective irradiance (E{er})_

Quantity defined by the equation:

\[
E_{er} = \int E_\lambda \cdot s_e(\lambda) \, d\lambda
\]

where \(E_\lambda \) is the spectral irradiance in W·m\(^{-2}\)·nm\(^{-1}\) and \(s_e(\lambda) \) is the erythema action spectrum normalized to its maximum.

erythemal effective radiant exposure (H{er}), also called the effective dose or erythemal dose_

The time integral of erythemal effective irradiance defined by the equation

\[
H_{er} = \int \int E_\lambda \cdot s_e(\lambda) \, d\lambda \, dt
\]

where \(E_\lambda \) is the spectral irradiance in W·m\(^{-2}\)·nm\(^{-1}\) and \(s_e(\lambda) \) is the erythema action spectrum.

minimal erythema dose (MED)

A subjective measure based on the reddening of the skin; it depends on many variables, e.g. individual sensitivity to UVR, radiometric characteristics of the source, skin pigmentation, anatomic site, elapsed time between irradiation and
observing the reddening (typical value: 24 hours), etc. It should be reserved solely for observational studies in humans and other animals.

standard erythema dose (SED)

Standardised measure of erythemogenic UV radiation, 1 SED is equivalent to an erythemal effective radiant exposure of 100 J·m\(^{-2}\).

ultraviolet radiation (UVR)

Optical radiation in the 100 nm to 400 nm wavelength range.

Annex A

(Non-normative annex)

Bibliography

© 1999 ISO/IEC — All rights reserved