A selective dynamic compiler for embedded Java virtual machines targeting ARM processors

Mourad Debbabi, Abdelouahed Gherbi, Azzam Mourad and Hamdi Yahyaoui
Computer Security Laboratory, Concordia Institute for Information Systems Engineering, Engineering and Computer Science Faculty, Concordia University, Montreal, QC, Canada

Abstract

This paper presents a new selective dynamic compilation technique targeting ARM 16/32-bit embedded system processors. This compiler is built inside the J2ME/CLDC (Java 2 Micro Edition for Connected Limited Device Configuration) platform [Sun Microsystems, Java 2 Platform, Micro Edition, Version 1.0 Connected, Limited Device Configuration, Specification, Technical Report, Sun Microsystems, CA, USA, May 2000]. The primary objective of this work is to elaborate an efficient, lightweight and low-footprint accelerated Java virtual machine ready to be executed on embedded machines. This is achieved by implementing a selective ARM dynamic compiler called Armed E-Bunny into Sun’s Kilobyte Virtual Machine (KVM) [Sun MicroSystems, KVM porting guide, Technical Report, Sun Microsystems, CA, USA, September 2001]. In this paper we present the motivations, the architecture, the design and the implementation of Armed E-Bunny. The modified KVM is ported on a handheld PDA that is powered with embedded Linux and is tested using standard J2ME benchmarks. The experimental results demonstrate that a speed-up of 360% over the last version of Sun’s KVM is accomplished with a footprint that does not exceed 119 KB. An important result of this paper is also the proposition of an acceleration technique that leverages Armed E-Bunny by establishing a synergy between efficient interpretation and
selective dynamic compilation. The main traits of this technique are: a one-pass compilation by code reuse, an efficient threaded interpretation and a fast switching mechanism between the interpreted and compiled modes.

Keywords: J2ME; CLDC; Embedded devices; Virtual machine; Java acceleration; Selective dynamic compilation; KVM; ARM architecture